<form id="n7tz9"></form>

<noframes id="n7tz9"><form id="n7tz9"></form>

<address id="n7tz9"><form id="n7tz9"></form></address><noframes id="n7tz9"><listing id="n7tz9"><listing id="n7tz9"></listing></listing>
<form id="n7tz9"></form>

      <noframes id="n7tz9"><address id="n7tz9"><nobr id="n7tz9"></nobr></address>

      光伏產業網

      太陽能光伏行業
      領先的資訊
      當前位置: 光伏產業網 ? 資訊 ? 光伏技術 ? 正文

      利用光催化劑 有望使太陽能效率獲大幅提升

      核心提示:中國科學技術大學熊宇杰教授課題組基于無機固體精準制備化學,采用晶體缺陷工程,設計出一類具有缺陷態的氧化鎢納米結構,在廣譜

       中國科學技術大學熊宇杰教授課題組基于無機固體精準制備化學,采用晶體缺陷工程,設計出一類具有缺陷態的氧化鎢納米結構,在廣譜光照條件下展現出優異的有氧偶聯催化性能,有望實現低能耗和低成本的有機化工技術。該成果7月11日在線發表在國際重要化學期刊《美國化學會志》上。

      當今的有機化工體系中,絕大部分催化反應是基于貴金屬催化劑的使用,并且依靠石油、煤炭的燃燒所驅動,存在催化劑材料成本高、能耗高等缺點。而金屬氧化物具有低成本等優點,并且展現出光催化活性,是一類理想的催化材料。然而,金屬氧化物在氧分子活化體系中的表現卻不盡如人意,無法有效俘獲太陽能并將之傳遞給氧分子。

      熊宇杰課題組針對該挑戰,設計出一類具有精準可控氧空位缺陷態的氧化鎢納米結構。通常金屬氧化物的金屬原子具有配位飽和的特點,無法通過化學吸附來活化氧分子。而氧空位缺陷的構筑克服了該缺點,促進了光生電子從氧化物催化劑向氧分子的高效轉移。另一方面,缺陷態的出現大幅度擴寬了光催化劑的吸光范圍,使其在可見光和近紅外光區寬譜范圍內俘獲太陽能。這就實現了太陽能的有效俘獲及能量轉換傳遞,解決了氧化物催化劑在光催化有機合成中的瓶頸問題。

       

      閱讀下一篇文章

      熱點資訊

      推薦圖文

      精品国产一区二区三区久